ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Stefan Schmid, Rudi Kulenovic, Eckart Laurien (University of Stuttgart)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 406-413
For the investigations of leakage flow rates with reduced stagnation pressure (maximum 1.0 MPa) and stagnation temperature (maximum 170 °C) compared to real plant conditions, the Leakage Flow (LF) test rig is used. The design of the test rig enables experimental measurements of leakage flow rates through cracks with different shapes, sizes and wall thicknesses.
In the paper, experimental results of leakage flow measurements for one artificial through-wall crack geometry with a rectangular shape are presented. The fluid conditions of the investigations vary in the pressure range from 0.2 MPa to 1.0 MPa with a maximum temperature of 170 °C. The experimental values in the single-phase regime up to 90 °C are used to calculate the overall loss coefficient respectively the friction factor and are compared to theoretical models. The results at elevated temperature from 100 °C to 170 °C are discussed considering the subcooling of the fluid and compared to theoretical values calculated by the modified Bernoulli equation.