ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Stefan Schmid, Rudi Kulenovic, Eckart Laurien (University of Stuttgart)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 406-413
For the investigations of leakage flow rates with reduced stagnation pressure (maximum 1.0 MPa) and stagnation temperature (maximum 170 °C) compared to real plant conditions, the Leakage Flow (LF) test rig is used. The design of the test rig enables experimental measurements of leakage flow rates through cracks with different shapes, sizes and wall thicknesses.
In the paper, experimental results of leakage flow measurements for one artificial through-wall crack geometry with a rectangular shape are presented. The fluid conditions of the investigations vary in the pressure range from 0.2 MPa to 1.0 MPa with a maximum temperature of 170 °C. The experimental values in the single-phase regime up to 90 °C are used to calculate the overall loss coefficient respectively the friction factor and are compared to theoretical models. The results at elevated temperature from 100 °C to 170 °C are discussed considering the subcooling of the fluid and compared to theoretical values calculated by the modified Bernoulli equation.