ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Stefan Schmid, Rudi Kulenovic, Eckart Laurien (University of Stuttgart)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 406-413
For the investigations of leakage flow rates with reduced stagnation pressure (maximum 1.0 MPa) and stagnation temperature (maximum 170 °C) compared to real plant conditions, the Leakage Flow (LF) test rig is used. The design of the test rig enables experimental measurements of leakage flow rates through cracks with different shapes, sizes and wall thicknesses.
In the paper, experimental results of leakage flow measurements for one artificial through-wall crack geometry with a rectangular shape are presented. The fluid conditions of the investigations vary in the pressure range from 0.2 MPa to 1.0 MPa with a maximum temperature of 170 °C. The experimental values in the single-phase regime up to 90 °C are used to calculate the overall loss coefficient respectively the friction factor and are compared to theoretical models. The results at elevated temperature from 100 °C to 170 °C are discussed considering the subcooling of the fluid and compared to theoretical values calculated by the modified Bernoulli equation.