ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Shikha A. Ebrahim, Nurali Virani, Shi Chang, Fan-Bill Cheung (Penn State)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 387-396
An advance image processing technique is developed to quantitatively characterize the liquid-vapor interfacial waves, vapor layer thickness, minimum film boiling temperature (Tmin), quenching temperature (TQ), quenching time, and quench front velocity in the film boiling heat transfer regime. A facility was constructed with the purpose of performing high-temperature quenching of a simulated fuel rod in a near-saturated/subcooled water pool at atmospheric pressure. Inconel-600 tubular test sample with an outer diameter of 9.5 mm and a length of 25 cm was used. The test section has an embedded thermocouple that is connected to a data acquisition system for recording the temperature transients during quenching. An inverse heat conduction code was used to calculate the surface temperature and the corresponding heat flux. The latter was used to determine Tmin, which represents the minimum heat flux point on the boiling curve.
When a heated test section at a sufficiently high temperature plunges in a saturated or subcooled pool, a stable and continuous vapor layer is formed around it, preventing the liquid from being in a direct contact with the heated surface during film boiling. As the surface temperature of the rod gradually decreased, the vapor film starts to collapse at Tmin. Subsequently, the rod temperature dropped dramatically as the regime of heat transfer changed from transition boiling to nucleate boiling. Visualization of the boiling behavior was captured by a high-speed camera at a frame rate of 750 frames per second (fps) from which the vapor film thickness and the behavior of the liquid-vapor interface in the film boiling regime were analyzed frame by frame. The vapor-liquid interfacial waves as well as their temporal evolution are visualized for a range of wall superheat and various degrees of liquid subcooling. The thermocouple data and the taken videos are synchronized to couple the behavior of the vapor layer with the thermal behavior of the heated rod. Through the intensive image analyses, it was concluded that the vapor film thickness decreases contributing to a higher Tmin. Additionally, more oscillations of the vapor-liquid interface were found in the case of near-saturated pool. The quench front speed was observed to be constant for each subcooling.