ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Joseph J. Cambareri (NCSU), Jun Fang (ANL), Andre Gouws, Igor A. Bolotnov (NCSU)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 335-340
Understanding the dynamics behind bubbly flows is critical to the analysis of a pressurized water reactor (PWR) system, but there are still phenomena within bubbly flows that are not fully understood. Utilizing direct numerical simulations (DNS) coupled with interface tracking methods (ITM), high-fidelity numerical data can be extracted from bubbly flow simulations for use in the development of closure laws and mechanistic models. With the use of a bubble tracking algorithm that can record information specific to individual bubbles within the flow, numerical data can be gathered on a fundamental level. State-of-the-art high performance computing (HPC) facilities were used to simulate two-phase, turbulent flow within the subchannel of a PWR for both a simple subchannel geometry and one with a spacer grid and mixing vanes included. A statistical analysis of the numerical data gathered from these simulations can then be studied to discover the dependency of bubble dynamics upon flow conditions. Bubbles can be split into groups in relation to their distance to the wall, and the dependency of quantities such as the relative velocity or the drag coefficient upon the distance to the wall can be investigated. This work splits previously generated numerical data into seven bubble groups for further statistical analysis, as well as dividing the subchannel into “quadrants” to check for time averaged imbalances in bubble population resulting from geometric influences. These post processing techniques seek to offer insight into the physics behind bubbly flow conditions.