ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Joseph J. Cambareri (NCSU), Jun Fang (ANL), Andre Gouws, Igor A. Bolotnov (NCSU)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 335-340
Understanding the dynamics behind bubbly flows is critical to the analysis of a pressurized water reactor (PWR) system, but there are still phenomena within bubbly flows that are not fully understood. Utilizing direct numerical simulations (DNS) coupled with interface tracking methods (ITM), high-fidelity numerical data can be extracted from bubbly flow simulations for use in the development of closure laws and mechanistic models. With the use of a bubble tracking algorithm that can record information specific to individual bubbles within the flow, numerical data can be gathered on a fundamental level. State-of-the-art high performance computing (HPC) facilities were used to simulate two-phase, turbulent flow within the subchannel of a PWR for both a simple subchannel geometry and one with a spacer grid and mixing vanes included. A statistical analysis of the numerical data gathered from these simulations can then be studied to discover the dependency of bubble dynamics upon flow conditions. Bubbles can be split into groups in relation to their distance to the wall, and the dependency of quantities such as the relative velocity or the drag coefficient upon the distance to the wall can be investigated. This work splits previously generated numerical data into seven bubble groups for further statistical analysis, as well as dividing the subchannel into “quadrants” to check for time averaged imbalances in bubble population resulting from geometric influences. These post processing techniques seek to offer insight into the physics behind bubbly flow conditions.