ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. Isaev, J. Felbinger, C. Evrim, R. Kulenovic, E. Laurien (Univ of Stuttgart)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 325-334
Turbulent and stratified mixing flows can cause thermal fatigue in nuclear power plant piping systems. In order to diminish the investigation effort of thermal mixing flow phenomena, a geometrically similar isothermal Mixed Fluid Interaction (MFI) mixing tee using a sodium chloride solution to model the cold heavy branch pipe fluid is built. The purpose of the MFI experiments is to predict the flow phenomena in the vertical thermal mixing Fluid Structure Interaction (FSI) T-junction configuration at the University of Stuttgart. Due to limited optical accessibility of the FSI facility a numerical similarity comparison of the flow phenomena occurring in both experimental setups (MFI/FSI) is essential. Thus, Large Eddy Simulations are carried out which are experimentally validated by applying the Particle Image Velocimetry and Planar Laser Induced Fluorescence measurement techniques and as well as benchmark data. The similarity investigation confirms the usage of three characterizing parameters for the adaption of relevant physical boundary conditions to the FSI setup (branch pipe Reynolds number (??????), mixing Richardson number (????) and momentum ratio (????)). Thereby, the evidenced similarity ensures the utilization of the cold mixing experimental setup for the visual prediction of flow patterns occurring in the hot mixing FSI facility.