ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Luis E. Herranz, Claudia López (CIEMAT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 318-324
Worldwide there has been an enormous interest to fully understand the Fukushima accident unfolding, as a way to gain key insights for prevention of these accidents and mitigation of their consequences. This paper focuses on the CIEMAT’s forensic analysis of the Fukushima Unit 1 (1F1) accident sequence. By identifying the major challenges faced for a consistent interpretation of the data available, a description of the MELCOR 2.2 model built to capture the main accident signatures is presented, with particular emphasis on fission product release and transport. Even though this study should be seen as a work in progress, the results here presented are based on a defendable set of hypotheses and approximations and highlight some interesting observations that might have affected fission product release and transport. Among them are worth mentioning the deposit remobilization during the transient (Cesium), the moderate retention in the suppression pool due to the WW bypass meant by direct leaks between RPV and DW and the potential reentrainment as a result of pool saturation. This being said, it’ll be hard to confirm any of these insights concerning fission products. This work is framed under the BSAF Phase 2 project of the OECD and it has been supported by the Spanish Nuclear Regulatory Body through the CSN-CIEMAT collaboration agreement on Severe Accidents (ACAS).