ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mélany Gouëllo, Jouni Hokkinen, Teemu Kärkelä (VTT Technical Research Centre of Finland)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 293-301
(LWR), radioactive iodine may be released into the environment, impacting significantly to the source term. Determination of the amount released, and of the physical state of iodine (gaseous form or solid aerosol form), is thus a major issue, regarding the improvement of the accident management and mitigation measures The experimental EXSI-PC facility has been specifically designed and built to investigate the behaviour of iodine containing fission product deposits on primary circuit surfaces during a severe nuclear accident. Studies were conducted with two mixtures of caesium iodide and molybdenum oxide (Mo/Cs=1.6 and Mo/Cs=5) in order to assess the possible chemical reactions and the effect on the transport of chemical species through the primary circuit. In addition, two carrier gas compositions (Ar/H2O versus Ar/Air) were studied to highlight the effect of oxygen partial pressure.
In this work, the influence of molybdenum presence on the caesium iodide behaviour under two atmospheres: Ar/H2O and Ar/Air (86.7/13.3 vol.%) was studied. The release of gaseous iodine was higher when the oxygen partial pressure was higher (i.e. for Ar/Air atmosphere). In addition, the results showed that an initial Mo/Cs molar ratio of 1.6 produced about 1.5 times higher amount of gaseous iodine than a ratio of 5. The formation of caesium molybdates was identified in the crucible after the experiments, confirming that the reaction between caesium and molybdenum is the reason for the observed formation of gaseous iodine. The experimental results are mostly in accordance with the equilibrium calculations performed with FactSage.