ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Lili Liu, Hongxing Yu, Liang Chen, Deng Jian, Deng Chunrui, Zhang Dan, Wu Xiaoli ( Nuclear Power Inst of China)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 239-246
The configuration of a corium pool in the lower plenum of reactor vessel is very important for validity of maintaining reactor vessel integrity under IVRERVC (In-Vessel corium Retention through External Reactor Vessel Cooling) condition. A method is designed to predict the configuration of corium pool for an Advanced China PWR, call ACP1000 after entire melt dropping into the lower plenum. It takes into account both thermo-chemical reaction of oxides and metals in corium and the influence of different paths of corium relocated from core region into the lower plenum. The reasons why a three-layer pool has not been observed in the MASCA and COSMOS tests are given by this method. The method is applied to investigate the corium configuration of ACP1000 after a hypothetical station blackout (SBO) accident. It is shown that the stratification of the corium pool is related to the relocation paths of the corium. In the case of downward relocation, a two-layer melt pool with a metal layer on the top is formed. For the sideward relocation, the configuration shows a stratified pool consisting of a dense metal layer on the bottom, an oxide layer in the middle and a light metal layer on the top.