ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Wael Hilali, Nihed Lasmar, Michael Buck, Joerg Starflinger, Eckart Laurien (Univ of Stuttgartf)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 229-238
One of the crucial questions in the management and mitigation of the consequences of a severe accident in light water reactors (LWR) is how to cool and stabilize the molten corium. For several designs of LWR, a deep pool of water is foreseen in the lower drywell of the containment. In the case of the failure of the reactor pressure vessel, the core melt materials will be discharged into the pool. By contact with water, it will fragment, solidify and settle on the bottom forming a porous debris bed. A two-dimensional continuum model of the deposition and relocation of particles is described in this paper. The mathematical model is based on a hyperbolic system of partial differential equations determining the distribution of the flowing layer depth and the depth-averaged velocity component tangential to the sliding bed. Because of the hyperbolicity of the system, successful implementation of a solver is challenging, notably when large gradients of the physical variables appear, e.g., for a moving front in the flowing layer or possibly formed shock waves during the deposition. In this paper, several numerical methods are applied to solve the system and compared, including the first-order upstream difference scheme, as well as the Roe’s Riemann solver, and high-resolution NOC (Non-Oscillatory Central Differencing) schemes, in which several TVD (Total Variation Diminishing) limiters and reconstruction methods are applied. The implemented solver has provided promising results, which are verified with analytical solutions in the steady state. The spatial convergence is also reported and quantified with the use of the grid convergence index (GCI). The performed simulations with this modeling approach give some useful insights for the study of the most critical parameters influencing granular bed formation process. It will contribute to the enhancement of the capabilities of the system code COCOMO simulating real reactor applications and providing more realistic data.