ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yoshiro Nishioka, Satoru Kuboya, Yuya Takahashi, Hideki Horie, Mika Tahara (Toshiba Energy Systems & Solutions Corp), Tadashi Fujii (Hitachi-GE Nuclear Energy, Ltd), Takafumi Tsuji (Chubu Electric Power Co., Inc.)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 223-228
The passive debris cooling system provides a means to stably hold and cool the molten core (debris) dropped from the reactor vessel by the heat resistant material laid on the bottom of the containment vessel. As a heat resistant material, high melting point and highly corrosion-resistant oxide is laid on the pedestal and water is injected afterwards to suppress MCCI by the molten core. In the past research, although knowledge about molten core and concrete has been acquired, knowledge about interaction between molten core and heat resistant material is insufficient. Therefore, element tests on heat resistant materials were conducted, various heat resistant materials were screened, and molten core - heat resistant material interaction model was constructed using the obtained findings. Using the constructed model, we evaluated the erosion / heat transfer behavior of the heat resistant material assuming the bottom of the BWR / Mark - II type containment vessel at the time of severe accident and confirmed the MCCI suppression effect by the passive debris cooling system.