ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Xinyu Zhao, Eugene Shwageraus (Univ of Cambridge)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 198-205
GeN-FOAM is a multi-physics solver based on the OpenFOAM library developed at PSI/EPFL, Switzerland for transient analyses of fast reactors. The current version of GeN-FOAM can simulate a wide range of transients with flexible spatial resolution. One of the main limitations of the current version, however, is relatively simple fuel temperature calculation model. Also, the effects of fuel structural and dimensional changes as a function of temperature, composition and burnup are currently not considered. This work first presents the integration of an advanced fuel performance modelling tool TRANSURANUS developed at Joint Research Centre (JRC)-Karlsruhe into the GeN-Foam solver. The new coupled tool is referred to as the GeN-transFoam. The original GeN-Foam doesn't have burnup calculation capability which makes it very inconvenient to simulate a reactor at the end of cycle, especially when an accurate fuel behaviour prediction is expected. The paper reports a simple way to implement the burnup calculation, given the configuration of the GeN-Foam solver. The GeNtransFoam solver with account for burnup effects is used to analysis the European Sodium Fast Reactor (ESFR) at the end of cycle (EOC) in steady state condition. The neutronics calculation results are compared with results provided by Monte Carlo calculation. In the end, the burnup calculation in the code is discussed.