ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
X. Zhao (MIT), A. Wysocki, R. Salko (ORNL), K. Shirvan (MIT)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 148-155
The critical heat flux (CHF) corresponding to the departure from nucleate boiling (DNB) is one of the major limiting factors in the design and operation of pressurized water reactors (PWRs). Various predictive tools have been proposed for steady-state conditions. Empirical correlations and look-up tables yield relatively good agreement with specific experimental datasets and are widely used in subchannel codes for PWR transient simulations. However, experimental studies have revealed that during fast transients the CHF values can become significantly higher than those in steady-state or slow transient scenarios, causing this modeling approach to result in overly conservative DNB prediction. This paper presents a mechanistic transient CHF model. Based on prior work, two DNB triggering mechanisms prevail in this model - the hydrodynamic thinning process and the thermal thinning process - both of which rely on the liquid sublayer dryout theory. Both mechanisms evaluate the depletion of the liquid sublayer underneath vapor slugs flowing over the channel. This model is further validated against three sets of power transient experiments at different operating conditions. While it clearly outperforms steady-state approaches and generally agrees closely with measurements, it still remarkably under-estimates CHF for very fast transients at low pressure. Future investigations will address this limitation.