ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jarod Wilson, Sara Hauptman, Akshay Dave, Kaichao Sun, Lin-wen Hu (MIT), Ruimin Ji, Yang Zou (CAS)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 76-83
The growing global demand for emission-free energy is creating a market for advanced Generation-IV NPP, and the Fluoride salt-cooled High-temperature Reactor design with a pebble-type fuel is a promising candidate. However, this design also brings unique challenges, namely evaluating the effects of the fuel’s distribution and dynamic movement. Generating explicitly described fuel pebble loading patterns is non-trivial. This study serves two main purposes: 1) to investigate the neutronic performance of pebble type fuel within the TMSR-SF1, and 2) to conduct a preliminary comparison between pebble coordinate generation methods. The first method of coordinate generation, the Discrete Element Method (DEM), is a particle-tracking model which accounts for inter-particle forces. While this method generates packing distributions closer to real-world scenarios, it is computationally intense. The alternative method analyzed is a mathematical model (MM), which fills arbitrary domains through simple geometric rules on the addition of particles. This method, while less realistic, generates coordinates significantly faster. Afterwards, fuel pebble coordinates from both methods are utilized to generate inputs for high-fidelity neutronics modelling. The results of these simulations, with the aid of various tools within Python, allowed for the neutronic analysis of the core, specifically when considering the eigenvalues of each coordinate set, and the fission power distribution within the fuel pebbles. It was found that the packing fraction in the axial direction to be consistent within the MM coordinate generation method, and the general trends similar between it and DEM-generated coordinates. Additionally, the eigenvalues of the simulated core were found to be proportional to the number of pebbles within the core. Finally, the fission power distribution of the cores was found to be qualitatively consistent both within many sets of MM-generated coordinates, and in comparisons of the two coordinate generation methods.