ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Wei Tang, Jian Chen, Brian Gibson, Roger Miller, Scarlett Clark, Mark Vance, Zhili Feng, Keith Leonard (ORNL), Jonathan Tatman, Benjamin Sutton, Gregory Frederick (EPRI)
Proceedings | 2018 International Congress on Advances in Nuclear Power Plants (ICAPP 2018) | Charlotte, NC, April 8-11, 2018 | Pages 67-75
Welding is widely used for repair, maintenance, and upgrade of nuclear reactor components. As a critical technology for supporting the extension of nuclear power plant service lifetimes beyond 60 years, there has been an industry need in further developing welding technology for highly irradiated materials. During welding of irradiated materials, Helium, which is a transmutation byproduct from Boron and Nickel contained in the structural alloys, can coalesce into bubbles along grain boundaries in the material under driving forces of high temperature and thermal tensile stress. This leads to embrittlement and potential intergranular cracking in the Heat Affected Zone (HAZ) of the weld. In this paper, irradiated 304 stainless steel coupons containing 5, 10 and 20 ppm Boron prior to radiation were successfully welded by advanced laser beam welding (LBW) and friction stir welding (FSW). Facilities and welding machine design, welding processes development, cold material welded joints evaluation, process safety control and documentation, and irradiated material welding are discussed. Both laser and friction stir welded coupons of the irradiated material exhibited high welding quality and surface finish. No Helium induced welding defects were observed on the weld surfaces or adjacent base metals.