ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Shokoufeh Zargar, Ricardo A. Medina (Univ of New Hampshire), Luis Ibarra (Univ of Utah)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 931-939
This research deals with the development and calibration of numerical models of fuel rods based on quasi-static and vibration experiments performed on intact (unirradiated) rods. The original rod configuration exhibits a gap between the cladding and pellets that may be reduced, or even closed, after irradiation due to the swelling of the pellets, leading to bonding between the pellets and cladding. In this paper two cases are investigated. First, the pellets are bonded to the cladding, with the pellets just in contact with one another (de-bonded). Second, the pellets are in contact with the cladding and with one another without bonding. Due to limited availability of irradiated fuel rods and their restricted workability, the experiments were performed on unirradiated surrogate copper claddings with steel pellets, and the bonding was simulated using adhesive epoxy. The experiments were conducted with fixtures that represent pin supports. The results obtained on the vibration response of surrogate copper rods, indicate that bonding of the pellets and cladding results in a total rod flexural rigidity equal to the rigidity of the copper cladding and up to 15% of the flexural rigidity of the pellets. For the case of pellet-cladding in contact, the contribution of the steel pellets to the total rod flexural rigidity is negligible.