ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Scott M. Richards (Univ of Tennessee), Brandon R. Grogan (ORNL)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 899-905
The Inverse Depletion Theory (INDEPTH) code is one of the tools being used to analyze the traditional nondestructive assay (NDA) measurements and verify the initial enrichment, burnup, and cooling time values of spent nuclear fuel (SNF) declared by facilities. The INDEPTH code attempts to reconstruct the initial enrichment and operating history by using the Oak Ridge Isotope Generation (ORIGEN) code to simulate irradiation and cooling of the fuel. This work examined the sensitivity of INDEPTH results to variations in irradiation conditions. Three types of measured data were simulated to identify possible sources of systematic error. An absolute gamma measurement with a gross neutron count produced more accurate answers than either the relative gamma measurement or the absolute gamma measurement by itself in most cases. However, long shutdown times between irradiation cycles were found to greatly affect the accuracy, with the absolute gamma plus gross neutron counts case losing the most accuracy. In these cases, the added neutron data either did not significantly improve the results or made them worse.