ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Katherine A. Daniels, Jon F. Harrington (British Geological Survey), Mark Jensen (NWMO)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 826-833
The Bruce nuclear site in Canada has been proposed to host a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW). The repository would be constructed within a low permeability, argillaceous limestone, the Upper Ordovician age Cobourg Formation. Here, we present the results of two steady-state laboratory hydraulic conductivity tests performed to measure the intrinsic permeability of rock core samples from the Cobourg and overlying Queenston shale formations; both samples were measured under an isotropic confining pressure using a constant head approach. Pump pressures and volumes were recorded for upstream and downstream pumps, throughout testing. The resulting hydraulic inflow and outflow rates were measured for each sample under two different pressure gradients, yielding exceptionally low values of permeability (on the order of 10-22 m2 or 0.1 nD). These data provide further evidence of the applicability of existing steady-state experimental methods to obtain reliable estimates of extremely low permeabilities from rock core samples under re-established in-situ stress conditions. The exceptionally low permeability of these formations, consistent with in-situ testing and formation scale estimates obtained during the site characterisation program, along with their low porosities, renders them an effective barrier to hydraulic flow for the purpose of geological isolation.