ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Katherine A. Daniels, Jon F. Harrington (British Geological Survey), Mark Jensen (NWMO)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 826-833
The Bruce nuclear site in Canada has been proposed to host a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW). The repository would be constructed within a low permeability, argillaceous limestone, the Upper Ordovician age Cobourg Formation. Here, we present the results of two steady-state laboratory hydraulic conductivity tests performed to measure the intrinsic permeability of rock core samples from the Cobourg and overlying Queenston shale formations; both samples were measured under an isotropic confining pressure using a constant head approach. Pump pressures and volumes were recorded for upstream and downstream pumps, throughout testing. The resulting hydraulic inflow and outflow rates were measured for each sample under two different pressure gradients, yielding exceptionally low values of permeability (on the order of 10-22 m2 or 0.1 nD). These data provide further evidence of the applicability of existing steady-state experimental methods to obtain reliable estimates of extremely low permeabilities from rock core samples under re-established in-situ stress conditions. The exceptionally low permeability of these formations, consistent with in-situ testing and formation scale estimates obtained during the site characterisation program, along with their low porosities, renders them an effective barrier to hydraulic flow for the purpose of geological isolation.