ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Katherine A. Daniels, Jon F. Harrington (British Geological Survey), Mark Jensen (NWMO)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 826-833
The Bruce nuclear site in Canada has been proposed to host a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW). The repository would be constructed within a low permeability, argillaceous limestone, the Upper Ordovician age Cobourg Formation. Here, we present the results of two steady-state laboratory hydraulic conductivity tests performed to measure the intrinsic permeability of rock core samples from the Cobourg and overlying Queenston shale formations; both samples were measured under an isotropic confining pressure using a constant head approach. Pump pressures and volumes were recorded for upstream and downstream pumps, throughout testing. The resulting hydraulic inflow and outflow rates were measured for each sample under two different pressure gradients, yielding exceptionally low values of permeability (on the order of 10-22 m2 or 0.1 nD). These data provide further evidence of the applicability of existing steady-state experimental methods to obtain reliable estimates of extremely low permeabilities from rock core samples under re-established in-situ stress conditions. The exceptionally low permeability of these formations, consistent with in-situ testing and formation scale estimates obtained during the site characterisation program, along with their low porosities, renders them an effective barrier to hydraulic flow for the purpose of geological isolation.