ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
John R. Cochran, Patrick V. Brady, Ernest L. Hardin (SNL)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 810-817
Disposal of used nuclear fuel and vitrified high-level radioactive waste (UNF and HLW) in a mined geologic repository is the preferred alternative for the countries with the largest inventories of UNF and HLW. However, deep borehole disposal (DBD) may be especially well suited for countries with small nuclear power programs because DBD is relatively inexpensive and scalable; whereas the threshold costs to develop a mined geologic repository are high and do not scale with the inventory.
Historically, options for countries with small nuclear power programs (programs that individually generate only a few percent of the world total mass of UNF and/or HLW) have been: (1) to return the UNF to the supplier, (2) to have the SNF reprocessed, with return and in-country disposal of the resulting vitrified HLW in a mined geologic repository, (3) to develop in-country, direct disposal of the UNF in a mined geologic repository or (4) to send the UNF to a hypothetical multi-national mined geologic repository for disposal. However, in-country DBD is likely to be least expensive, and technically achievable with existing technology. In-country DBD could also be a viable alternative for disposal of used fuel assemblies from decommissioned research reactors in developing countries.