ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
V, V. Rondinella, R. Nasyrow, D. Papaioannou (EC-JRC), E. Vlassopoulos (EPFL), F. Cappia, O. Dieste-Blanco, T. A. G. Wiss (EC-JRC)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 734-740
The consequences of potential accidents causing spent fuel rod failure may involve fuel particles release and dispersion. This paper presents recent results from spent fuel experimental studies performed at JRCKarlsruhe addressing handling/transportation and longterm storage issues. An impact test using a hammer drop device in hot cell was performed on a spent fuel segment from a UO2 PWR rod with a burnup of ~67 GWd/tHM. The segment was not defueled and was repressurized to 40 bar before the test. Similarly to what observed in previous impact tests, only the fuel volume directly affected by the rod fracturing was released. In addition to the fuel material released during the impact, neither further particles release nor "flow-out" type of behaviour was observed by further tapping on the fractured segments after the test. Preliminary particle size distribution analysis of the fuel particles deposited on a second stage filter of the testing chamber collecting particles with size ?8 ?m indicates a log-normal distribution with main particle size of 2.4 ?m and standard deviation of 1.1 ?m. A few sub-micron particles were detected. The detailed analysis of the results, including finer particle fractions, is still ongoing. The final goal of these investigations is to determine criteria and conditions governing the response of spent fuel rods to impact loads and other thermo-mechanical solicitations corresponding to normal and off-normal conditions that may be experienced by the rod during handling, transportation, storage and after extended storage. In addition to impact and other mechanical loading tests, property measurements as a function of accumulated radiation damage are performed on spent fuel and alpha-doped analogues to determine the long term evolution and the potential effects of ageing processes on the mechanical integrity of the spent fuel rod.