ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
V, V. Rondinella, R. Nasyrow, D. Papaioannou (EC-JRC), E. Vlassopoulos (EPFL), F. Cappia, O. Dieste-Blanco, T. A. G. Wiss (EC-JRC)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 734-740
The consequences of potential accidents causing spent fuel rod failure may involve fuel particles release and dispersion. This paper presents recent results from spent fuel experimental studies performed at JRCKarlsruhe addressing handling/transportation and longterm storage issues. An impact test using a hammer drop device in hot cell was performed on a spent fuel segment from a UO2 PWR rod with a burnup of ~67 GWd/tHM. The segment was not defueled and was repressurized to 40 bar before the test. Similarly to what observed in previous impact tests, only the fuel volume directly affected by the rod fracturing was released. In addition to the fuel material released during the impact, neither further particles release nor "flow-out" type of behaviour was observed by further tapping on the fractured segments after the test. Preliminary particle size distribution analysis of the fuel particles deposited on a second stage filter of the testing chamber collecting particles with size ?8 ?m indicates a log-normal distribution with main particle size of 2.4 ?m and standard deviation of 1.1 ?m. A few sub-micron particles were detected. The detailed analysis of the results, including finer particle fractions, is still ongoing. The final goal of these investigations is to determine criteria and conditions governing the response of spent fuel rods to impact loads and other thermo-mechanical solicitations corresponding to normal and off-normal conditions that may be experienced by the rod during handling, transportation, storage and after extended storage. In addition to impact and other mechanical loading tests, property measurements as a function of accumulated radiation damage are performed on spent fuel and alpha-doped analogues to determine the long term evolution and the potential effects of ageing processes on the mechanical integrity of the spent fuel rod.