ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Efstathios Vlassopoulos (EPFL), Ramil Nasyrow, Dimitrios Papaioannou, Vincenzo V. Rondinella (EC-JRC), Stefano Caruso (Nagra), Andreas Pautz (EPFL/Scherrer Inst)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 726-733
The investigation of the mechanical integrity of spent nuclear fuel rods in accidental scenarios is the main objective of this research, conducted at the hot-cell facilities of the Joint Research Centre (JRC) - Karlsruhe. Two devices for mechanical testing on fuelled, pressurized spent nuclear fuel rod segments have been developed for gravitational impact and 3-point bending tests. The main objectives of this program are the determination of rod response to external load, rod failure conditions and the characterization of fuel release in case of rod fracture. The campaign consists of two phases, namely the development and optimization of the testing devices in "cold" laboratories and their installation and application to test irradiated spent fuel in hot-cells. This paper focuses on the main stages of the development and optimization of the new devices, detailing the motivation behind them and their extended data acquisition capabilities. Representative results on the response of SNF to these dynamic and quasi static loads are presented. The load-deflection curves for the fuel/cladding ensemble and the characterization (mass/size distribution) of released fuel debris following SNF fracture are described.