ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Juraj Vaclav (Nuclear Regulatory Authority), Mária ?arnogurská, Tomáš Brestovi? (Technical Univ in Košice), Jaroslav Sivák (ALFA Security Technologies a.a.), Andrea Václavová (Slovak Univ of Technology in Bratislava)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 587-594
During transport and storage of spent nuclear fuel sub-criticality, protection of environment against radiation, and residual heat removal have to be ensured.
The paper describes the evaluation of modeling and calculation of temperature field for transport container C-30.
The aim of thermal calculations of transport container is to prove that residual heat produced by spent fuel could be safely led away without any damage to the fuel and to the container. All previous calculations considered the inventory of the container (spent fuel assemblies, cask, and water) as a homogenous entity with internal heat source.
3D model was created using ANSYS CFX software. It models in a simply way fuel assemblies as well as a cooling medium flow.
Each spent fuel assembly is divided into two parts. The central circular part represents the area of water between fuel pins. This part does not produce any heat. The rest of the assembly is bordered by hexagon on the outer periphery and by a circle inside of the fuel assembly. Only this part is responsible for heat production.
The calculations were made for residual heat output of 5, 10, 15, 20 and 24 kW.
The results were compared with experimentally obtained values.