ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Juraj Vaclav (Nuclear Regulatory Authority), Mária ?arnogurská, Tomáš Brestovi? (Technical Univ in Košice), Jaroslav Sivák (ALFA Security Technologies a.a.), Andrea Václavová (Slovak Univ of Technology in Bratislava)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 587-594
During transport and storage of spent nuclear fuel sub-criticality, protection of environment against radiation, and residual heat removal have to be ensured.
The paper describes the evaluation of modeling and calculation of temperature field for transport container C-30.
The aim of thermal calculations of transport container is to prove that residual heat produced by spent fuel could be safely led away without any damage to the fuel and to the container. All previous calculations considered the inventory of the container (spent fuel assemblies, cask, and water) as a homogenous entity with internal heat source.
3D model was created using ANSYS CFX software. It models in a simply way fuel assemblies as well as a cooling medium flow.
Each spent fuel assembly is divided into two parts. The central circular part represents the area of water between fuel pins. This part does not produce any heat. The rest of the assembly is bordered by hexagon on the outer periphery and by a circle inside of the fuel assembly. Only this part is responsible for heat production.
The calculations were made for residual heat output of 5, 10, 15, 20 and 24 kW.
The results were compared with experimentally obtained values.