ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Allan Hedin, Adam Johannes Johansson, Christina Lilja (SKB)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 559-567
Copper has, based on its favorable corrosion properties according to established scientific knowledge, been selected as a container material in the KBS-3 repository concept. The view that copper corrodes only to a very limited extent in pure O2-free water has, however, been challenged in some publications during the last decade. Therefore, SKB has initiated experimental and theoretical work to evaluate the claims made in those publications.
The experiments on which the claims are based have been repeated under more controlled conditions and an alternative method to carry out the same measurement has been developed and applied. No evidence of continuing copper corrosion was found. Theoretical and experimental work has been carried out in search of hitherto unknown species of the Cu-O-H system that could be a driving force for corrosion reactions. No such species were found. Reports of these works are summarized and it is concluded that the scientific basis for claiming that copper corrodes in pure water to an extent exceeding that predicted by established thermodynamic data is weak.
In addition, “what if” calculations are presented, where it is hypothetically assumed that the recent claims regarding copper corrosion are correct. The calculations demonstrate that copper corrosion depths in a final repository would be of the order of 1 mm in one million years, also for a bounding case where no transport limitations in a repository environment are taken into account.