ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. Chatzidakis, J. J. Jarrell, J. M. Scaglione (ORNL)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 518-523
Abstract: The inspection of the dry storage canisters that house spent nuclear fuel is an important issue facing the nuclear industry; currently, there are limited options available to provide for even minimal inspections. An issue of concern is stress corrosion cracking (SCC) in austenitic stainless steel canisters. SCC is difficult to predict and exhibits small crack opening displacements on the order of 15–30 ?m. Nondestructive examination (NDE) of such microscopic cracks is especially challenging, and it may be possible to miss SCC during inspections. The coarse grain microstructure at the heat affected zone reduces the achievable sensitivity of conventional ultrasound techniques. At Oak Ridge National Laboratory, a tomographic approach is under development to improve SCC detection using ultrasound guided waves and model-based iterative reconstruction (MBIR). Ultrasound-guided waves propagate parallel to the physical boundaries of the surface and allow for rapid inspection of a large area from a single probe location. MBIR is a novel, effective probabilistic imaging tool that offers higher precision and better image quality than current reconstruction techniques. This paper analyzes the canister environment, stainless steel microstructure, and SCC characteristics. The end goal is to demonstrate the feasibility of an NDE system based on ultrasonic guided waves and MBIR for canister degradation and to produce radar-like images of the canister surface with significantly improved image quality. The proposed methodology can potentially reduce human radiation exposure, result in lower operational costs, and provide a methodology that can be used to verify canister integrity in-situ during extended storage.