ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
Erich Wieland, Benjamin Z. Cvetkovi?, Dominik Kunz (Scherrer Inst), Gary Salazar, Söenke Szidat (Univ of Bern)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 506-511
Carbon-14 is an important radionuclide in the inventory of radioactive waste. In Switzerland, the 14C inventory in a cement-based repository for low- and intermediate-level radioactive waste (L/ILW) is mainly associated with activated steel (?85 %). In light water reactors (LWR) 14C is the product of 14N activation in steel parts exposed to thermal neutron flux. 14C has been identified a key radionuclide in safety assessments. Release of 14C occurs due to slow corrosion of activated steel in the near field of a deep geological repository. While the 14C inventory is well known, the speciation of 14C upon release from activated steel is only poorly understood. The present study is aimed at investigating the formation of carbon species during the anoxic corrosion of iron and steel and determining the 14C species formed in a corrosion experiment with activated steel. The experiments were carried out in conditions similar to those anticipated in the near field of a cement-based repository.