ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. L. Carvalho (Golder Associates), A. Ž. Živkovi?, A. Lee (NWMO)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 446-451
The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM); the approach selected by the Government of Canada for long-term management of Canada’s used nuclear fuel.
The Canadian program is in the conceptual stages and layouts have been advanced to facilitate communication about the disposal concept, but without the benefit of having a specific site identified as the host for the repository. The Canadian layouts to date have assumed that a large enough homogeneous and isotropic domain of rock will be available to host the repository; therefore the layouts tend to be of very regular geometries and compact. Other countries, such as Finland and Sweden, have identified their hosting locations which exhibit crystalline geosphere conditions. They started the development of adaptive (flexible) site-specific underground layouts capable of adjusting to encountered structural anisotropy. When viewed from this angle, it is possible that a number of Canadian candidate sites in crystalline geosphere would exhibit similar features. With this recognition, NWMO has started the development of adaptive layouts.
This paper presents the results of the first comparative study between the base case (regular and compact) and more adaptive layouts applied to a hypothetical Canadian crystalline geosphere. The Pugh Matrix (opportunity analysis) suitable for early design stages is used for comparative studies taking into consideration various factors including cost, schedule, site characterization requirements, constructability, operational flexibility, maintainability, operational safety and long-term safety, etc. It was concluded that the concepts represented in the adaptive layout offer advantages in relation to flexibility, schedule, post closure safety and thermal performance that may justify a deviation from the base case once a site has been selected.