ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Elena Kalinina, Brian Cohn, Doug Osborn, Jeffrey Cardoni, Adam D. Williams, M. Jordan Parks, Katherine Jones, Nathan Andrews, Emma Johnson, Ethan Parks, Amir Mohagheghi (SNL)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 414-427
Transportation of spent nuclear fuel (SNF) is expected to increase in the future, as the nuclear fuel infrastructure continues to expand and fuel takeback programs increase in popularity. Analysis of potential risks and threats to SNF shipments is currently performed separately for safety and security. However, as SNF transportation increases, the plausible threats beyond individual categories and the interactions between them become more apparent.
A new approach is being developed to integrate safety, security, and safeguards (3S) under a system-theoretic framework and a probabilistic risk framework. At the first stage, a simplified scenario will be implemented using a dynamic probabilistic risk assessment (DPRA) method. This scenario considers a rail derailment followed by an attack. The consequences of derailment are calculated with RADTRAN, a transportation risk analysis code. The attack scenarios are analyzed with STAGE, a combat simulation model. The consequences of the attack are then calculated with RADTRAN. Note that both accident and attack result in SNF cask damage and a potential release of some fraction of the SNF inventory into the environment.
The major purpose of this analysis was to develop the input data for DPRA. Generic PWR and BWR transportation casks were considered. These data were then used to demonstrate the consequences of hypothetical accidents in which the radioactive materials were released into the environment. The SNF inventory is one of the most important inputs into the analysis. Several pressurized water reactor (PWR) and boiling water reactor (BWR) fuel burnups and discharge times were considered for this proof-of-concept. The inventory was calculated using ORIGEN (point depletion and decay computer code, Oak Ridge National Laboratory) for 3 characteristic burnup values (40, 50, and 60 GWD/MTU) and 4 fuel ages (5, 10, 25 and 50 years after discharge).
The major consequences unique to the transportation of SNF for both accident and attack are the results of the dispersion of radionuclides in the environment. The dynamic atmospheric dispersion model in RADTRAN was used to calculate these consequences. The examples of maximum exposed individual (MEI) dose, early mortality and soil contamination are discussed to demonstrate the importance of different factors.
At the next stage, the RADTRAN outputs will be converted into a form compatible with the STAGE analysis. As a result, identification of additional risks related to the interaction between characteristics becomes a more straightforward task. In order to present the results of RADTRAN analysis in a framework compatible with the results of the STAGE analysis, the results will be grouped into three categories:
• Immediate negative harms
• Future benefits that cannot be realized
• Additional increases in future risk
By describing results within generically applicable categories, the results of safety analysis are able to be placed in context with the risk arising from security events.