ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Gregory Mathieu, Amélie de Hoyos, (Inst de Radioprotection et de Sûreté Nucléaire), Sitakanta Mohanty, Stuart Stothoff, Michael Muller (CNWRA)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 380-388
Simulations that combine flow modeling with radionuclide transport modeling provide insights into the performance of a hypothetical geologic repository for radioactive waste. Key parameters driving performance can be identified and quantified using probabilistic sampling of the model parameters. This paper presents a probabilistic framework, referred to as the MC-MELODIE hydrologic flow and contaminant transport model, for analyzing flow and transport behavior in the context of intermediate level long-lived (ILLLW) and high-level (HLW) disposal in a deep geological formation at the Meuse/Haute-Marne (MHM) site in France. The flow and transport framework includes nested, but separate, simulations with common parameters in order to consider small-scale features (detailed drift and shaft configurations) within the repository formation while also considering large-scale (regional) release. Specific analyses use one-million-year simulations with a conservative tracer and assuming instantaneous failures and steady flow to examine the effect of repository layout on radionuclide transfer to the surrounding aquifers through the host formation and engineered features, and to illustrate how uncertainties in far-field conditions and potential future human activities may affect the fate of released radionuclides.