ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Gregory Mathieu, Amélie de Hoyos, (Inst de Radioprotection et de Sûreté Nucléaire), Sitakanta Mohanty, Stuart Stothoff, Michael Muller (CNWRA)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 380-388
Simulations that combine flow modeling with radionuclide transport modeling provide insights into the performance of a hypothetical geologic repository for radioactive waste. Key parameters driving performance can be identified and quantified using probabilistic sampling of the model parameters. This paper presents a probabilistic framework, referred to as the MC-MELODIE hydrologic flow and contaminant transport model, for analyzing flow and transport behavior in the context of intermediate level long-lived (ILLLW) and high-level (HLW) disposal in a deep geological formation at the Meuse/Haute-Marne (MHM) site in France. The flow and transport framework includes nested, but separate, simulations with common parameters in order to consider small-scale features (detailed drift and shaft configurations) within the repository formation while also considering large-scale (regional) release. Specific analyses use one-million-year simulations with a conservative tracer and assuming instantaneous failures and steady flow to examine the effect of repository layout on radionuclide transfer to the surrounding aquifers through the host formation and engineered features, and to illustrate how uncertainties in far-field conditions and potential future human activities may affect the fate of released radionuclides.