ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Benjamin E. Harvey (Univ of Birmingham), Lindsay McMillan (Univ of Birmingham/Mott MacDonald), Alan W. Herbert (Univ of Birmingham)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 273-280
Colloids can potentially enhance the transport of radionuclides in groundwater, meaning radionuclides could travel further than would normally be predicted by solute-only transport modelling. To develop understanding, potential radionuclide transport processes are investigated. Colloid-Facilitated Radionuclide Transport is investigated as part of the Colloid Formation and Migration (CFM) experiment at the Grimsel Test Site in Switzerland, where in-situ migration experiments have investigated the transport of tracers, bentonite colloids and radionuclides at a variety of flow velocities in a shear zone within fractured granodiorite.
This paper presents a transport model that aims to replicate the transport of tracers, colloids and americium in two different experiments using consistent parameters. Inverse modelling has been used to describe the hydraulic properties of the shear zone. Flexible transport equations are then used to simulate contaminant transport. The model is able to replicate the breakthrough curves for colloids and americium across two experiments with different dipole flow fields using consistent parameters. The parameter values used to describe colloid attachment and americium desorption are within the ranges used by other models in the CFM programme, but are different to ones generated by laboratory desorption experiments. It is planned to extend the model to other radionuclides in the future.