ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Benjamin E. Harvey (Univ of Birmingham), Lindsay McMillan (Univ of Birmingham/Mott MacDonald), Alan W. Herbert (Univ of Birmingham)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 273-280
Colloids can potentially enhance the transport of radionuclides in groundwater, meaning radionuclides could travel further than would normally be predicted by solute-only transport modelling. To develop understanding, potential radionuclide transport processes are investigated. Colloid-Facilitated Radionuclide Transport is investigated as part of the Colloid Formation and Migration (CFM) experiment at the Grimsel Test Site in Switzerland, where in-situ migration experiments have investigated the transport of tracers, bentonite colloids and radionuclides at a variety of flow velocities in a shear zone within fractured granodiorite.
This paper presents a transport model that aims to replicate the transport of tracers, colloids and americium in two different experiments using consistent parameters. Inverse modelling has been used to describe the hydraulic properties of the shear zone. Flexible transport equations are then used to simulate contaminant transport. The model is able to replicate the breakthrough curves for colloids and americium across two experiments with different dipole flow fields using consistent parameters. The parameter values used to describe colloid attachment and americium desorption are within the ranges used by other models in the CFM programme, but are different to ones generated by laboratory desorption experiments. It is planned to extend the model to other radionuclides in the future.