ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
State lawmakers across the country push for more nuclear
From lifting moratoriums to launching studies to labeling it as clean, state lawmakers are exploring ways to give nuclear energy a boost in 2025. Here’s a look at some of the pronuclear legislation under review.
Timothy Ault, Steven Krahn (Vanderbilt Univ), Andrew Worrall (ORNL), Allen Croff (Vanderbilt Univ)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 210-216
The synergy of light and heavy water reactors using both uranium and thorium has been examined for the primary purpose of managing transuranic radionuclide (TRU) production. Two variants of a two-reactor system, where the first reactor uses uranium oxide fuel and the second reactor uses thorium-based fuels with a transuranic component, are analyzed from the perspective of TRU management. One variant uses low-enriched uranium made from natural uranium and uranium recovered from reprocessing in the first reactor, while the other variant uses highly enriched uranium. Full recycle of all actinides was used to minimize the amount of transuranics requiring repository disposal, so that the only source of exiting transuranics is from losses associated with process inefficiencies. Both variants compare favorably with other fuel cycle options with regards to the quantity of transuranic elements requiring geological disposal on an energy-normalized basis.