ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yongliang Xiong, Leslie Kirkes, Sungtae Kim, Cassie Marrs, Justin Dean, Jandi Knox, Haoran Deng, Martin Nemer (SNL)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 183-188
The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. Industrial-grade MgO consisting mainly of the mineral periclase is the only engineered barrier certified by U.S. EPA for emplacement in the WIPP in the U.S. An Mg(OH)2-based engineered barrier consisting mainly of the mineral brucite is to be employed in the Asse repository in Germany. The WIPP is located in a bedded salt formation, and the Asse repository is located in a domal salt formation.
Colloids would facilitate transport of contaminants including actinides. The regulator for the WIPP, U.S. Environmental Protection Agency (EPA), expressed its interest that possible formation of mineral colloids by MgO and its hydration and carbonation products under the WIPP-relevant conditions be evaluated.
In this presentation, we report a systematic experimental study to address U.S. EPA’s interest. We evaluated the possible formation of mineral colloids by using two approaches. In the first approach, as the hydration products, Mg(OH)2 (brucite), and Mg3Cl(OH)5•4H2O (phase 5), and the carbonation product, Mg5(CO3)4(OH)2•4H2O (hydromagnesite), contain magnesium, should mineral fragment colloids exist, magnesium concentrations in solution samples from MgO hydration and carbonation experiments would show a dependence on ultrafiltration, i.e., a decrease in magnesium concentrations as a function of ultrafiltration with decreasing molecular weight (MW) cut-offs. Therefore, we investigated magnesium concentrations from solutions samples in hydration and carbonation experiments as a function of ultrafiltration. We ultra-filtered solutions with a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. Our results demonstrate that the magnesium concentrations remain constant with decreasing MW cut-offs, implying the absence of mineral fragment colloids. In the second approach, because Cs+ is easily absorbed by colloids, we spiked MgO hydration and carbonation experiments under the WIPP-relevant conditions with Cs+. Then, we ultra-filtered solutions with a series of MW cut-off filters at 100 kD, 50 kD, 30 kD and 10 kD. The concentrations of Cs do not change as a function of MW cut-offs, indicating the absence of colloids from MgO hydration and carbonation products. Therefore, both approaches demonstrate that the absence of mineral fragment colloids from MgO hydration and carbonation products.