ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
J. D. Giallonardo, P. G. Keech, D. Doyle (NWMO)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 173-182
The Nuclear Waste Management Organization (NWMO) has proposed the concept of a deep geological repository (DGR) for the storage of Canada’s used nuclear fuel. A major component of the engineered barrier system is the used fuel container (UFC). NWMO’s UFC design has been optimized for CANDU fuel. It consists of a structural containment vessel fabricated from carbon steel which houses 48 used fuel bundles. The structural vessel is comprised of a cylindrical shell welded to hemi-spherical heads at either end. An integrally bonded 3 mm thick copper coating is applied to the exterior surface of the steel vessel for corrosion protection. Since 2011, the NWMO has conducted a multi-phase development program for the advancement of copper coating technologies application to UFC’s. This program consisted of proof of concept testing, optimization, technology scale-up and demonstration on full size UFC prototypes. From this work, two reference coating technologies have been identified: electrodeposition and cold spray. Electrodeposition will be used to copper coat the factory supplied UFC components (lower assembly and upper hemi-spherical head); it is a well established, straight-forward, industrial technique that is easily adapted to the UFC material and geometry under conventional fabrication conditions. The cold spray coating process will be used to complete the application of the corrosion barrier to the remaining uncoated zone about the closure weld following final assembly in the hot cell. In this regard, cold spray is well suited to automated robotic application in a radioactive environment. The objective of this paper is to present a current review of NWMO’s copper coating development program, application process to UFC’s and performance testing along with planned future work for continued advancement of the technologies.