ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Philip J. Jensen, Nicholas Klymyshyn, Steven B. Ross (PNNL), David Garrido (ENSA)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 84-89
Equipos Nucleares, S.A. (ENSA) and the US Department of Energy (DOE) are preparing a full scale Spent Nuclear Fuel (SNF) transportation test. This transportation testing will include road, rail, coastal, and trans-Atlantic shipments. The test campaign will use a full scale commercial dual-purpose package and cradle. The package will be loaded with at least two instrumented fuel assemblies to measure strains at cladding locations and accelerations on the fuel assemblies, and “dummy” assemblies in the remaining basket locations. This testing is designed to closely match an actual SNF shipment. Accelerometers will also be used at various locations throughout the full conveyance system (i.e. rail car/truck, cask, transport cradle, and basket) to study the transmission of loads through the system and to provide validation for numerical models. Previous testing and modeling work has shown how the structural transmissibility of the transport system can affect the magnitude of these loads, and the importance of modeling all aspects of the transport system (i.e., rail car/truck, transport cradle, cask, basket, and fuel) (Ref 1, 2). This paper describes preliminary models that were constructed to estimate load transmission during rail transport, from the bottom of the cradle to an individual fuel rod within the package. The modeling studies in this paper evaluate the system response to postulated shock pulses and random vibration loads. These models describe the transmissibility of the conveyance, and demonstrate how loads can be amplified or attenuated as they are transmitted through the structure. This is done by coupling the rail vehicle dynamics code NUCARS, to the general finite element modeling code ANSYS, and the explicit dynamics code LS-DYNA. Models such as the ones presented herein will be used during the test campaign to help analyze and evaluate the test data as it is collected.