ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Liange Zheng, Jonny Rutqvist, Hao Xu, Jens T. Birkholzer (LBNL)
Proceedings | 16th International High-Level Radioactive Waste Management Conference (IHLRWM 2017) | Charlotte, NC, April 9-13, 2017 | Pages 20-29
Subsurface manipulations such as those expected from the disposal of heat-emanating radioactive waste in deep repositories can induce strongly coupled Thermal (T), hydrological (H), mechanical (M) and chemical (C) processes. Adequate coupled THMC models are highly desirable or even indispensable for performance assessment of such repositories, for examples for the analysis of bentonite or clay barriers around surrounding the emplaced waste. In this study, we present coupled THMC model simulations of a generic nuclear waste repository in a clay formation with a bentonite-based buffer. The objective is to evaluate the chemical changes in the EBS bentonite and their effects on mechanical behaviors under high temperature, attempting to shed light on whether EBS bentonite can sustain temperatures higher than 100 °C without significant impact on barrier performance.
Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 °C and a case in which the temperature in the bentonite near the waste canister peaks at about 100 °C. Simulations have been done for two types of bentonite: Kunigel-VI and FEBEX bentonite. This enables us to evaluate how different types of bentonite behave in terms of the illitization and subsequent swelling stress change and whether we can generalize these changes to support decision making. The simulations show the occurrence of illitization in the bentonite buffer and the enhancement of illitization under high temperature; the degree of illitization is affected by many chemical factors and subsequently varies a great deal. Our models show that the dissolution of K-feldspar strongly affects illitization in bentonite and the interaction between EBS bentonite and host rock is particularly important for illitization in the long run. Swelling stress reduction in bentonite due to illitization ranges from ~1.5% to ~18% after 1,000 years depending degree of illitization, initial conditions and type of bentonite. FEBEX bentonite undergoes less illitization mainly due to the higher ion concentration in pore water and the lower content of K-feldspar in the bentonite mineral composition. Moreover, the reduction of swelling stress by chemical changes is more pronounced for Kunigel-VI bentonite than for FEBEX bentonite. Overall, the results of our model simulations suggest that an argillite repository with a bentonite-based EBS that is similar to FEBEX bentonite could sustain temperatures much higher than 100°C as far as illitization concerns.