ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Tae-Joon Kim, Valeriy S. Yugay, Ji-Young Jeong, Jong-Man Kim, Byeung-Ho Kim, Tae-Ho Lee, Yong-Bum Lee, Yeong-Il Kim, Dohee Hahn
Nuclear Technology | Volume 170 | Number 2 | May 2010 | Pages 360-369
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT10-A9489
Articles are hosted by Taylor and Francis Online.
This technical note presents the results of an experimental study of the role of water in sodium leak noise spectrum formation and at various water/steam leak rates of <1.0 g/s. The conditions and ranges for the existence of bubbling and jetting modes in water/steam outflow into circulating sodium through an injector device were determined to simulate a defect in the wall of the heat-transmitting tube of a sodium-water steam generator (SG). Based on experimental leak noise data, the simple dependency of the acoustic signal level on the leak rate of a microleak and small leaks at different frequency bands was presented for the principal analysis to develop an acoustic leak detection methodology for a KALIMER-600, 600-MW(thermal) reactor (K-600) SG, with the operational experiences for noise analysis and measurements of the Bystry neutron (fast neutron) reactor BN-600. Finally, the methodology was tested with the Korea Atomic Energy Research Institute (KAERI) acoustic leak detection system using sodium-water reaction signals of the Institute of Physics and Power Engineering and background noise of the Prototype Fast Reactor (PFR) superheater for methodology development of KAERI, and it was able to detect a leak rate of under 1 g/s and a signal-to-background noise ratio of -22 dB, using this system and methodology.