ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Anatoly Bushuev, Alexander Kozhin, Viktor Zubarev, Tatiana Aleeva, Ekaterina Petrova, Anatoly Myrzin, Alexey Syrosev, Genadiy Vlaskin, Timur Ragimov, Valentin Timoshin, Andrey Samoilov
Nuclear Technology | Volume 170 | Number 2 | May 2010 | Pages 353-359
Technical Paper | Human Factors | doi.org/10.13182/NT10-A9488
Articles are hosted by Taylor and Francis Online.
This paper presents a nondestructive methodology for the determination of mass and isotopic composition of large plutonium samples. The methodology is based on experimental data from measurements of gamma radiation emitted by plutonium samples under assay. Both plutonium mass and plutonium isotopic composition are derived from one experimental gamma spectrum in two energy ranges. Gamma spectrum in the middle-energy range is used for the determination of plutonium isotopic composition from experimental intensities of photo peaks belonging to different plutonium isotopes. Gamma spectrum in the high-energy range contains photo peaks of spontaneous fission products, and these data can be used for the determination of plutonium mass. The calibration curve for dependence of the count rates in photo peaks of spontaneous fission products on effective 240Pu mass was plotted based on experimental data for the enterprise-level reference plutonium samples. When processing experimental data, some corrections were introduced to account for self-absorption of gamma radiation in the plutonium samples and for neutron-induced fission reactions. The correction factors were calculated with the application of Monte Carlo methodology. The final relative errors in the determination of plutonium dioxide mass were within the range of (4 to 10)% (1) for nuclear material containers with different cooling times and different isotopic compositions of plutonium.