ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NN Asks: Why are states racing to get back into nuclear?
Sukesh Aghara
When I wrote “From Quad to Grid” last year (Nuclear News, August 2025, p. 10), I argued that universities could serve as honest brokers in bridging public trust and technical execution for nuclear energy. Since then, state-level interest has surged. Governors and legislatures are no longer debating whether nuclear belongs in the clean energy portfolio—they’re budgeting for it; staffing it; and tying it to jobs, industrial growth, and grid reliability.
This momentum isn’t a sudden change of heart. It’s the result of four timelines that have quietly converged over decades.
Sami Penttilä, Aki Toivonen, Liisa Heikinheimo, Radek Novotny
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 261-271
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Materials for Nuclear Systems | doi.org/10.13182/NT10-A9463
Articles are hosted by Taylor and Francis Online.
The High Performance Light Water Reactor (HPLWR) design is one of the concepts chosen for Generation IV reactors; however, the material requirements for HPLWR offer challenges because of the extreme operating temperatures and pressures. Consequently, general corrosion rates were studied in water at 300 to 650°C at supercritical pressure using weight gain measurements. Oxide thicknesses were determined from cross-section samples. The compositions of the oxide layers were analyzed using scanning electron microscopy in conjuction with energy dispersive spectroscopy. The surface layers of selected samples were analyzed also by X-ray diffraction. The test matrix included ten materials from four alloy classes: ferritic/martensitic steels, oxide dispersion strengthened (ODS) steels, austenitic stainless steels, and nickel-base alloys. A high oxidation resistance was seen in Ni-base alloy 625, austenitic stainless steels with high Cr content (>18 wt% Cr), and an ODS steel containing 20% Cr at all applied test temperatures (300 to 650°C). The oxidation rates of austenitic stainless steels with lower Cr content, 15 to 18%, increase considerably at temperatures >500°C. The oxidation rates of 9% Cr ODS steels were moderate or high at all temperatures. Ferritic/martensitic steels showed high oxidation rates at all temperatures.