ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
B. Tourniaire, B. Spindler, M. Guillaumé
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 201-209
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-6
Articles are hosted by Taylor and Francis Online.
Heat transfer between corium pool and concrete directly governs the ablation velocity of concrete in the case of molten core-concrete interaction (MCCI) and, consequently, the time delay when the reactor cavity may fail. Numerical tools dealing with MCCI generally consider that the ablation velocity of concrete is higher than the "velocity" of heat transfer inside the concrete so that conduction heat transfer in the basemat is not taken into account. With such modeling, concrete ablation goes on until the heat flux between the corium pool and the concrete is zero. This assumption proved to be satisfactory for high heat flux because of the low thermal diffusivity of concrete. Nevertheless, it can be discussed in cases where the heat flux between the corium and the concrete is "low" that is in the long-term phase of MCCI or in cases with a strong imbalance in the power splitting at the corium pool boundaries. In such situations, the heat transfer by conduction in the concrete is no longer negligible and can lead to the end of the concrete ablation. Heat conduction in the concrete could be taken into account by solving multi-dimensional transient heat transfer equations in the concrete. A spatial meshing of the basemat is then necessary, but such an approach is time-consuming. That is why a simplified one-dimensional transient approach has been chosen and implemented in the TOLBIAC-ICB code. The main purpose of this paper is to present this approach. The validation has been performed by comparing the results of this method with experimental data obtained from studying the thermal response of polymethylmetacrylate and concrete to a heat flux. Results of the model are also compared to the solutions obtained by the numerical resolution of the discretized heat transfer equation on a fine mesh. Finally, an application to the reactor case is proposed.