ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Masayuki Naganuma, Takashi Ogawa, Shigeo Ohki, Tomoyasu Mizuno, Shoji Kotake
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 170-180
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Fuel Cycle and Management | doi.org/10.13182/NT10-A9455
Articles are hosted by Taylor and Francis Online.
In the Fast Reactor Cycle Technology Development (FaCT) project, a sodium-cooled fast reactor (SFR) with mixed-oxide (MOX) fuel and an SFR with metal fuel were selected as the primary and the secondary candidates, respectively, for the Japan Sodium-Cooled Fast Reactor (JSFR). The present study focuses on the effects of transuranium (TRU) composition in the design for the JSFR core with MOX fuel. In the transitional stage from light water reactor (LWR) to fast breeder reactor (FBR), there is the possibility for FBR fuel to have high minor actinide (MA) content due to the recycling of LWR spent fuel. High MA content affects core and fuel designs as follows: the neutronic reactivity characteristic changes; the linear power limit is reduced because of decreases of the melting point and thermal conductivity in the fuel; the gas plenum length is extended because of an increase in He gas generation. Thus, to evaluate the effects quantitatively, design studies for cores with two TRU compositions were conducted: an FBR multirecycle composition with [approximately]1 wt% (in heavy metal) of MA content and an LWR recycle composition for which 3 wt% of MA content was assumed as a tentative target. The results show that the change from the FBR multirecycle composition to the LWR recycle composition leads to a sodium void reactivity increase of 10%, a linear power limit decrease of 1 to 2%, and a gas plenum length increase of 5%. As a result, the effects of TRU composition on the core and fuel designs were revealed to be benign.