ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Hidemasa Yamano, Shigenobu Kubo, Ken-Ichi Kurisaka, Yoshio Shimakawa, Hiromi Sago
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 159-169
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT09-6
Articles are hosted by Taylor and Francis Online.
An advanced large-scale sodium-cooled fast reactor named JSFR adopts an innovative two-loop cooling system. This cooling system design raises major technological issues: hydraulic and structural integrity due to the increase in one-loop coolant flow rate, safety design against the break or failure in one-loop piping, and ensuring the reliability of the decay heat removal system (DHRS). The present paper describes the investigation of the piping structural integrity due to flow-induced vibration using a 1/3-scale hot-leg piping test. The structural integrity of the hot-leg piping in the JSFR design has been confirmed by a flow-induced vibration analytical methodology, verified with the experimental data. Additional experimental results have revealed that hydraulic issues including gas entrainment and vortex cavitation could be prevented by some design measures. By applying appropriate safety design, the two-loop system has been confirmed to be valid against the break or failure in one-loop piping by a safety evaluation in this study. The DHRS with natural circulation is designed in conformity with the two-loop system by introducing adequate safety designs. In this paper, the validity of this DHRS is given by a probabilistic safety assessment and safety evaluation.