ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Shripad T. Revankar, Seungmin Oh, Wenzhong Zhou, Gavin Henderson
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 28-39
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-A9443
Articles are hosted by Taylor and Francis Online.
A condensation correlation was developed for vapor and air mixture condensation in a vertical tube based on experimental data and a mechanistic model based on heat and mass analogy model. Parametric computations were performed using a heat and mass analogy model for various operating parameters of the passive condenser system. The parameters investigated were noncondensable gas mass fraction Wbulk, mixture gas Reynolds number ReG, and Jacob number JaG. An alternating conditional expectation (ACE) regression algorithm was used to develop the condensation heat transfer correlation for the passive condenser. A total of 102600 data points was used as input to the ACE. Local condensation heat transfer correlations in terms of Nusselt number (Nucond) obtained were: Nucond = 0.08Wbulk-0.9ReG1.1exp(-42.5JaG) for turbulent flow and Nucond = 160Wbulk-0.9exp(-42.5JaG) for laminar flow. The correlations are valid for 0 Wbulk 0.5, 0 ReG 4 × 104 , 0.002 JaG 0.05. The prediction of the developed correlation agreed well with the available experimental data. The correlations are useful in predicting the heat transfer characteristics of a passive containment cooling system (PCCS) in an economic simplified boiling water reactor. These correlations apply to the three modes of PCCS operation, namely through-flow mode, complete condensation mode, and cyclic condensation and venting mode.