ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
In Cheol Bang, Ji Hyun Kim
Nuclear Technology | Volume 170 | Number 1 | April 2010 | Pages 16-27
Technical Paper | Special Issue on the 2008 International Congress on Advances in Nuclear Power Plants / Thermal Hydraulics | doi.org/10.13182/NT10-A9442
Articles are hosted by Taylor and Francis Online.
Nanofluids including metal or metal-oxide nanoparticles have shown improved thermal performance compared to water. Introducing zinc into a water-containing component of the primary system of a boiling water reactor or pressurized water reactor nuclear power plant is known to prevent the deposition of radioactive cobalt and to reduce the possible susceptibility of component materials to corrosion. Also, it is well known that silicon carbide (SiC) is a promising material for advanced reactors. Therefore, preparations of zinc oxide (ZnO) and SiC nanofluids have been used in diverse methods to reduce inconsistency of nanofluid performance. Thermal-fluid characterizations were carried out under the control of the preparation methods. In addition, indirect checks by contact angle measurements of depositions have shown that ZnO and SiC nanofluids as a self-recovering/healing coating solution can contribute to advanced nuclear safety systems in terms of the critical heat flux margin. The results show that more efforts are needed to develop the nanofluid formulation to tailor the desired properties.