ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Adrián E. Méndez Torres, Mark Antonio Prelas, Louis M. Ross, Jr., Tushar K. Ghosh
Nuclear Technology | Volume 169 | Number 3 | March 2010 | Pages 271-278
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT10-A9379
Articles are hosted by Taylor and Francis Online.
Experimental results of the diffusion of chromium(II) in natural diamond powder (Cr:NDP) of 60 to 80 m using modified field enhanced diffusion with optical activation (MOD:FEDOA) are presented. MOD:FEDOA is a promising technique for incorporation of impurities into wide band gap powders in the nanometer-to-micrometer range. MOD:FEDOA uses a combination of thermal diffusion with electrical potential, thermal ionization, and optical ionization combined in one setup, developed as a primary tool for the diffusion of various impurities into diamond. The effect of the diffusion process was studied with micro-Raman and a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (EDS). Raman analysis shows an increase in disorder in the treated sample. The main Raman peak in diamond was identified at 1332 cm-1 , indicating that the sample maintained the diamond crystal structure after the incorporation of chromium (Cr). Secondary electron images show an increase in surface roughness, rounding of crystalline faces by oxidation, and microfractures in the treated diamond powder. Backscattered electron images revealed deposition of impurities on the surfaces of diamonds after doping. EDS and Raman shift confirmed the presence of Cr in diamond particles after treatment. Other impurities, Si and O, were also identified by EDS and micro-Raman. This work presents strong evidence that Cr can be incorporated into natural diamond. It also suggests that Cr:NDP is suitable for applications in nuclear industries such as radiation shield and cladding material. Further, this work offers the possibility to develop novel diamond-based materials that can be used in the nuclear field.