ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
Adrián E. Méndez Torres, Mark Antonio Prelas, Louis M. Ross, Jr., Tushar K. Ghosh
Nuclear Technology | Volume 169 | Number 3 | March 2010 | Pages 271-278
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT10-A9379
Articles are hosted by Taylor and Francis Online.
Experimental results of the diffusion of chromium(II) in natural diamond powder (Cr:NDP) of 60 to 80 m using modified field enhanced diffusion with optical activation (MOD:FEDOA) are presented. MOD:FEDOA is a promising technique for incorporation of impurities into wide band gap powders in the nanometer-to-micrometer range. MOD:FEDOA uses a combination of thermal diffusion with electrical potential, thermal ionization, and optical ionization combined in one setup, developed as a primary tool for the diffusion of various impurities into diamond. The effect of the diffusion process was studied with micro-Raman and a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (EDS). Raman analysis shows an increase in disorder in the treated sample. The main Raman peak in diamond was identified at 1332 cm-1 , indicating that the sample maintained the diamond crystal structure after the incorporation of chromium (Cr). Secondary electron images show an increase in surface roughness, rounding of crystalline faces by oxidation, and microfractures in the treated diamond powder. Backscattered electron images revealed deposition of impurities on the surfaces of diamonds after doping. EDS and Raman shift confirmed the presence of Cr in diamond particles after treatment. Other impurities, Si and O, were also identified by EDS and micro-Raman. This work presents strong evidence that Cr can be incorporated into natural diamond. It also suggests that Cr:NDP is suitable for applications in nuclear industries such as radiation shield and cladding material. Further, this work offers the possibility to develop novel diamond-based materials that can be used in the nuclear field.