ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
G. F. Kessinger, M. C. Thompson
Nuclear Technology | Volume 169 | Number 3 | March 2010 | Pages 263-270
Technical Paper | Reprocessing | doi.org/10.13182/NT10-A9378
Articles are hosted by Taylor and Francis Online.
The primary goal of this investigation was to evaluate the effectiveness of the chop-leach process, with nitric acid solvent, to produce a nominally 300 g/l [U] and 1 M [H+] product solution. The results of this study show that this processing technique is appropriate for applications in which a low free acid and moderately high U content are desired. The 7.75 l of product solution, which was >450 g/l in U, was successfully diluted to produce [approximately]13 l of solvent extraction feed that was 302 g/l in U with a [H+] in the range 0.8 to 1.2 M.A secondary goal was to test the effectiveness of this treatment for the removal of actinides from Zircaloy cladding to produce a low-level radioactive waste (LLW) cladding product. Analysis of the cladding shows that actinides are present in the cladding at a concentration of [approximately]5000 Ci/g, which is about 50 times greater than the acceptable transuranium element limit in LLW.It appears that the concentration of nitric acid used for this dissolution study (initial concentration 4 M, with 10 M added as the dissolution proceeded) was inadequate to completely digest the UO2 present in the spent fuel. The mass of insoluble material collected from the initial treatments with nitric acid, 340 g, was much higher than expected, and analysis of this insoluble residue showed that it contained at least 200 g U.