ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
NRC issues subsequent license renewal to Monticello plant
The Nuclear Regulatory Commission has renewed for a second time the operating license for Unit 1 of Minnesota’s Monticello nuclear power plant.
J. H. Kim, B. T. Min, I. K. Park, S. W. Hong
Nuclear Technology | Volume 169 | Number 3 | March 2010 | Pages 239-251
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT169-239
Articles are hosted by Taylor and Francis Online.
Three triggered steam explosion experiments using corium melts of various compositions were performed in the TROI facility. The interaction vessel was 0.3 m in diameter. The melt compositions were 70:30 (UO2:ZrO2) corium, pure zirconia, and partially oxidized corium (UO2:ZrO2:Zr:SS = 53.91:23.09:12.00:11.00 in weight percent). The test with 70:30 corium was performed with a 0.95-m-deep water pool under an elevated pressure of 0.205 MPa, while the others were performed with a 1.3-m-deep water pool under atmospheric pressure. The water temperature was maintained at room temperature. The melt mass released to the water pool was [approximately]10 kg for each test. The test with 70:30 corium resulted in a triggered steam explosion, considering the long duration of the dynamic pressure and the large amount of fine debris. The dynamic pressure trace from the steam explosion seemed to be superimposed on that from the external trigger. The test with pure zirconia led to multiple spontaneous steam explosions before any external triggering. The zirconia melt confirmed its explosivity. The spontaneous steam explosion with pure zirconia seems not to be affected by the water depth and diameter of the interaction vessel. The test with partially oxidized corium also resulted in a spontaneous steam explosion before an external triggering. These results are different from the previous TROI tests with 80:20 corium in a narrow interaction vessel of 0.3-m diameter, in which no spontaneous steam explosions occurred. The geometry of the interaction vessel used in these tests does not seem to influence the occurrence of a steam explosion, but the corium composition does affect the triggerability of it.