ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. H. Kim, B. T. Min, I. K. Park, S. W. Hong
Nuclear Technology | Volume 169 | Number 3 | March 2010 | Pages 239-251
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT169-239
Articles are hosted by Taylor and Francis Online.
Three triggered steam explosion experiments using corium melts of various compositions were performed in the TROI facility. The interaction vessel was 0.3 m in diameter. The melt compositions were 70:30 (UO2:ZrO2) corium, pure zirconia, and partially oxidized corium (UO2:ZrO2:Zr:SS = 53.91:23.09:12.00:11.00 in weight percent). The test with 70:30 corium was performed with a 0.95-m-deep water pool under an elevated pressure of 0.205 MPa, while the others were performed with a 1.3-m-deep water pool under atmospheric pressure. The water temperature was maintained at room temperature. The melt mass released to the water pool was [approximately]10 kg for each test. The test with 70:30 corium resulted in a triggered steam explosion, considering the long duration of the dynamic pressure and the large amount of fine debris. The dynamic pressure trace from the steam explosion seemed to be superimposed on that from the external trigger. The test with pure zirconia led to multiple spontaneous steam explosions before any external triggering. The zirconia melt confirmed its explosivity. The spontaneous steam explosion with pure zirconia seems not to be affected by the water depth and diameter of the interaction vessel. The test with partially oxidized corium also resulted in a spontaneous steam explosion before an external triggering. These results are different from the previous TROI tests with 80:20 corium in a narrow interaction vessel of 0.3-m diameter, in which no spontaneous steam explosions occurred. The geometry of the interaction vessel used in these tests does not seem to influence the occurrence of a steam explosion, but the corium composition does affect the triggerability of it.