ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
N. Girault, L. Bosland, J. Dienstbier, R. Dubourg, C. Fiche
Nuclear Technology | Volume 169 | Number 3 | March 2010 | Pages 218-238
Technical Paper | Reactor Safety | doi.org/10.13182/NT10-A9375
Articles are hosted by Taylor and Francis Online.
The Phebus Fission Product (FP) program studies key phenomena and phenomenology of severe accidents in water-cooled nuclear reactors. In the framework of the Phebus program, five in-pile experiments were performed that cover fuel rod degradation and behavior of FPs released via the coolant circuit into the containment vessel. Analyses of FP behavior were performed using standard stand-alone versions of codes with input data mainly taken from measured boundary conditions.The FPT2 test used 33 GWd/t uranium dioxide fuel enriched to 4.5%, reirradiated in situ for 7 days to a burnup of 130 MWd/t. This test was designed to study low-pressure FP release and transport through a primary cooling system that included a noncondensing steam generator, with release into the containment vessel in steam-poor conditions. This test also investigated how diluted boric acid in the injected steam influenced FP speciation. In the containment vessel, the objective was to study iodine chemistry in an alkaline sump under evaporating conditions.The analytical approach consisted of progressive studies to explore and explain the main disagreements between base-case calculations and experimental results. Regarding releases in slightly degraded fuel zones, the fission gas behavior and characteristics are shown to be satisfactorily reproduced by the calculations. Electron microprobe analyses also validate the mechanisms for Mo and Ba releases, while the Cs mechanism requires further investigation.Concerning the transport of FPs, a strong connection is shown to exist between Cs, I, Mo, and Cd that substantially impacts vapor-phase chemistry in equilibrium and iodine volatility. Most of the cesium released from fuel is shown to rapidly convert into cesium borates and then into cesium molybdates when the molybdenum release becomes significant at the end of the hydrogen production phase. The main predicted iodine vapor species is cesium iodide. A low fraction of gaseous hydrogen iodide is also calculated at low temperature, but this fraction was found to be strongly dependent on the Cd release kinetics. Hydrogen iodide is the main candidate predicted by equilibrium chemistry calculations to explain the persistence at low temperatures of volatile iodine. Nevertheless, potential limitations on chemical kinetics in the primary circuit zones, characterized by a sharp decrease in temperature, could also be an explanation and are currently under investigation.In the containment, gas-phase reactions were found to predominate in governing iodine chemistry. As for the previous Phebus tests, the gaseous iodine fraction measured in the containment early in the test is thought to come from the primary circuit. However, this low gaseous iodine was hardly tractable by the few dedicated samplings mounted in the primary circuit cold leg upstream from the containment entrance. By favoring hydrolysis reactions of volatile iodine species, the alkaline sump is shown to act as an iodine trap despite the evaporating conditions that prevail during the long-term chemistry phase. However, during this latter phase, a persistent, low-level concentration of gaseous iodine was reached in the long term, as during the previous FPT0/1 tests, indicative of a competition in the containment between iodine traps and sources. Aside from the aerosol particles injected by the primary circuit, in situ iodine oxide particles were found to be continuously forming from the decomposition of I2 and ICH3 by air radiolysis products. These particles are suspected to be fine, implying that they predominantly deposit by diffusion on all the containment surfaces. Therefore, in the long term, both the persistence of gaseous iodine and the survival of iodine oxide particles are shown to exist in the containment.