ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Stanley E. Turner, Thomas G. Haynes III
Nuclear Technology | Volume 169 | Number 2 | February 2010 | Pages 195-203
Technical Note | Radiation Protection | doi.org/10.13182/NT10-A9362
Articles are hosted by Taylor and Francis Online.
Neutron attenuation measurements have been used as an instrumental method of analyzing (normally flat) test coupons for the concentration of the 10B nuclide. Calibrated standards of well-characterized 10B content are used to interpret the observed neutron counting rates into the 10B areal density. Recently, there have been challenges to the validity of neutron attenuation measurements and their relationship to criticality safety analyses. For the most part, these challenges have been verbal without any supporting data. The present study was undertaken to provide experimental and analytical investigations of these challenges. The challenges are as follows: 1. It has been claimed that neutrons of any energy (including epithermal and fast neutrons) can be used for attenuation measurements. Spectral and reaction rate calculations are presented to demonstrate that only thermal neutrons have sufficient sensitivity to yield reliable neutron attenuation measurements because of the fundamental 1/v absorption cross section of 10B. 2. It has been alleged that only small-diameter [0.953 cm (3/8 in.)] neutron beams are acceptable for neutron attenuation measurements and that larger-diameter [2.54 cm (1 in.)] beams would "mask" any defects or significant nonuniformities. Both experimental and analytical data are presented to show that the measurements are independent of beam size and that adequate sensitivity to detect any defects or nonuniformities is provided. Criticality calculations are also presented to illustrate that small defects (holes or cracks) have very small effects on results of criticality analyses. 3. It has been postulated that in absorbers using particles of boron carbide, neutrons could stream past discreet particles, reducing the effectiveness of the absorber. While this may be true in attenuation measurements, there is no evidence that neutron streaming has any significant effect in criticality safety analyses. Calculations and an explanation are presented. Neutron attenuation and criticality analyses refer to physically different phenomena with appreciably different path lengths rendering criticality analyses insensitive to streaming.