ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Aya Diab, Michael Corradini
Nuclear Technology | Volume 169 | Number 2 | February 2010 | Pages 97-113
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT10-A9355
Articles are hosted by Taylor and Francis Online.
CANDU reactors are pressurized heavy water-moderated and heavy water-cooled reactor designs. During commissioning of nuclear power plants, a range of possible accidents must be considered to assure a plant's robust design. Consider a complete channel blockage in the CANDU reactor. Such an extreme flow blockage event would result in fuel overheating, pressure tube failure, partial melting of fuel rods, and possible molten fuel-moderator interactions (MFMIs). The MFMI phenomenon would occur immediately after the pressure tube rupture and would involve a mixture of steam, hydrogen, and molten fuel being ejected into the surrounding moderator water in the form of a high-pressure vapor bubble mixture. This bubble mixture would accelerate the surrounding denser water, causing interfacial mixing due to hydrodynamic instabilities at the interface. As a result of these interfacial instabilities, water is entrained into the growing two-phase bubble mixture with attendant mass and heat transfer, e.g., water vaporization and fuel oxidation. A comprehensive model has been developed to investigate these complex phenomena resulting from a postulated complete flow blockage and complete pressure tube failure. This dynamic model serves as a baseline to characterize the pressure response due to a pressure tube rupture and the associated MFMI phenomena. Theoretical modeling of these interrelated complex phenomena is not known a priori, and therefore, a semiempirical approach is adopted.