ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DOE, NNSA select partners for AI supercomputers
The Department of Energy, Argonne National Laboratory, NVIDIA, and Oracle have agreed to a public-private partnership to deliver the DOE’s largest AI supercomputers, named Solstice and Equinox.
B. Tóth, A. Bieliauskas, G. Bandini, J. Birchley, H. Wada, J. Hohorst, C. Jamond, K. Trambauer
Nuclear Technology | Volume 169 | Number 2 | February 2010 | Pages 81-96
Technical Paper | Reactor Saftey | doi.org/10.13182/NT10-A9354
Articles are hosted by Taylor and Francis Online.
This paper presents the results of posttest calculations of the phebus FPT2 experiment. While the exercise concentrates mainly on code-to-code benchmarking, a comparison is also made with selected experimental results. The test scenario with the appropriate initial and boundary conditions was provided by the Institut de Radioprotection et de Sûreté Nucléaire. For the analyses, seven severe accident analysis codes were used: ASTEC, ATHLET-CD, MELCOR, ICARE2, ICARE/CATHARE, SCDAP/RELAP5, and RELAP/SCDAPSIM.The calculations focused on the following phenomena occurring in the FPT2 bundle: thermal behavior; hydrogen production, mainly due to cladding oxidation; severe degradation of irradiated fuel; and the release of fission products, control rod, and structure materials.Using the same postdefined boundary and initial conditions, the code-data differences are typically within 10% for most parameters, and not more than 25%. More importantly, the codes were able to capture the major features of the transient evolution. Given that Phebus FPT2 exhibited almost all of the major low-pressure severe accident phenomena except for core cooling by water injection and late-phase core melt behavior in the lower head, the results engender a degree of confidence in the code predictive capability for sequences similar to FPT2.