ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
“The time is now” to advance U.S. nuclear—Part 1
The Nuclear Regulatory Commission is gearing up to tackle an influx of licensing requests and oversight of advanced nuclear reactor technology, especially small modular reactors.
Kozo Katsuyama, Koji Maeda, Tsuyoshi Nagamine, Hirotaka Furuya
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 73-80
Technical Paper | Radiation Measurements and Instrumentation | doi.org/10.13182/NT10-A9344
Articles are hosted by Taylor and Francis Online.
Three-dimensional X-ray computer tomography (CT) images were successfully taken of a fast breeder reactor fuel assembly that had been irradiated to high burnup. The interior and outside of the fuel assembly can be clearly observed on any cross section from any angle. These images make it possible to analyze deformations and microstructural changes in the fuel pins and abnormalities in the fuel assembly. An analysis was made for 127 central voids, i.e., one in each fuel pin of the traverse cross section, and the void sizes were tentatively related to the linear heat rating. Compared with conventional nondestructive and destructive postirradiation examinations (PIEs), this X-ray CT technique has great advantages including acquiring large numbers of PIE data in a short time, reducing PIE costs, reducing the amounts of radioactive waste generation, and physically protecting nuclear materials.