ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Jamil A. Khan, Travis W. Knight, Sujan B. Pakala, Wei Jiang, Ruixian Fang, James S. Tulenko
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 61-72
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT10-A9343
Articles are hosted by Taylor and Francis Online.
The thermal conductivity of the fuel in today's light water reactors, uranium dioxide (UO2), can be improved by incorporating a uniformly distributed heat-conducting network of a higher-conductivity material: silicon carbide (SiC). The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 (97% theoretical density). This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and development of a formal methodology for producing the resultant composite oxide fuel. Calculations of the effective thermal conductivity (ETC) of the new fuel as a function of percent SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The ETCs are obtained at different temperatures from 600 to 1600 K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. The heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for the thermal conductivity calculations and to estimate the reduction in centerline temperatures achievable within such a fuel rod. Later, the computer codes COMBINE-PC and VENTURE-PC were employed to estimate the fuel enrichment required to maintain the same burnup levels corresponding to a volume percent addition of SiC.