ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Thomas K. S. Liang, Show-Chyuan Chiang, Chung-Yu Yang, Liang-Che Dai
Nuclear Technology | Volume 169 | Number 1 | January 2010 | Pages 50-60
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT10-A9342
Articles are hosted by Taylor and Francis Online.
The limiting blowdown event for the design of an advanced boiling water reactor (ABWR) containment shifts from a conventional recirculation line break to a feedwater line break (FWLB) by implementing reactor internal pumps. As a result, coupled blowdown from both the reactor pressure vessel (RPV) and the balance of plant (BOP) is involved in the limiting FWLB. Coupled blowdown from both RPV and BOP for the FWLB of the Lungmen ABWR has been successfully analyzed using the advanced RELAP5-3D/K code. To simulate adequately both the RPV and BOP blowdown, the essential simulation scope of an ABWR includes the reactor system, the main steam and turbine systems, the condensate and feedwater systems, the protection system, and the emergency core cooling system. As compared to what was presented in the preliminary safety analysis report of the Lungmen ABWR, unexpected prolonged decays of BOP blowdown flow and enthalpy were calculated. The revised blowdown flow and enthalpy calculated by RELAP5-3D/K from both RPV and BOP breaks provide a new and solid basis for the final safety analysis of ABWR containment for the Lungmen plant, which is scheduled for commercial operation in 2011. The successful modeling of the entire RPV and BOP with RELAP5-3D/K and associated application to the FWLB licensing blowdown analysis indicate that the advanced RELAP5 code can extend its traditional reactor safety analysis to the simulation and analysis of the entire power generation and conversion systems.